Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

isNePal(V) → isQid(activate(V))
isPal(n__nil) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
Used ordering:
Polynomial interpretation [25]:

POL(__(x1, x2)) = 2·x1 + x2   
POL(a) = 0   
POL(activate(x1)) = x1   
POL(and(x1, x2)) = 2·x1 + x2   
POL(e) = 2   
POL(i) = 1   
POL(isList(x1)) = x1   
POL(isNeList(x1)) = x1   
POL(isNePal(x1)) = 1 + x1   
POL(isPal(x1)) = 1 + x1   
POL(isQid(x1)) = x1   
POL(n____(x1, x2)) = 2·x1 + x2   
POL(n__a) = 0   
POL(n__e) = 2   
POL(n__i) = 1   
POL(n__isList(x1)) = x1   
POL(n__isNeList(x1)) = x1   
POL(n__isPal(x1)) = 1 + x1   
POL(n__nil) = 0   
POL(n__o) = 1   
POL(n__u) = 0   
POL(nil) = 0   
POL(o) = 1   
POL(tt) = 0   
POL(u) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isQid(n__a) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isQid(n__a) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

isQid(n__a) → tt
Used ordering:
Polynomial interpretation [25]:

POL(__(x1, x2)) = x1 + x2   
POL(a) = 1   
POL(activate(x1)) = x1   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 0   
POL(i) = 1   
POL(isList(x1)) = 2·x1   
POL(isNeList(x1)) = 2·x1   
POL(isNePal(x1)) = x1   
POL(isPal(x1)) = x1   
POL(isQid(x1)) = x1   
POL(n____(x1, x2)) = x1 + x2   
POL(n__a) = 1   
POL(n__e) = 0   
POL(n__i) = 1   
POL(n__isList(x1)) = 2·x1   
POL(n__isNeList(x1)) = 2·x1   
POL(n__isPal(x1)) = x1   
POL(n__nil) = 0   
POL(n__o) = 0   
POL(n__u) = 0   
POL(nil) = 0   
POL(o) = 0   
POL(tt) = 0   
POL(u) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isQid(n__u) → tt
Used ordering:
Polynomial interpretation [25]:

POL(__(x1, x2)) = 2 + 2·x1 + x2   
POL(a) = 0   
POL(activate(x1)) = x1   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = 2·x1   
POL(isNeList(x1)) = 2·x1   
POL(isNePal(x1)) = 2·x1   
POL(isPal(x1)) = 2·x1   
POL(isQid(x1)) = x1   
POL(n____(x1, x2)) = 2 + 2·x1 + x2   
POL(n__a) = 0   
POL(n__e) = 0   
POL(n__i) = 0   
POL(n__isList(x1)) = 2·x1   
POL(n__isNeList(x1)) = 2·x1   
POL(n__isPal(x1)) = 2·x1   
POL(n__nil) = 0   
POL(n__o) = 0   
POL(n__u) = 2   
POL(nil) = 0   
POL(o) = 0   
POL(tt) = 0   
POL(u) = 2   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isNeList(V) → isQid(activate(V))
isPal(V) → isNePal(activate(V))
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isNeList(V) → isQid(activate(V))
isPal(V) → isNePal(activate(V))
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

and(tt, X) → activate(X)
Used ordering:
Polynomial interpretation [25]:

POL(__(x1, x2)) = 2 + x1 + 2·x2   
POL(a) = 2   
POL(activate(x1)) = x1   
POL(and(x1, x2)) = 2 + x1 + 2·x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = x1   
POL(isNeList(x1)) = x1   
POL(isNePal(x1)) = x1   
POL(isPal(x1)) = x1   
POL(isQid(x1)) = x1   
POL(n____(x1, x2)) = 2 + x1 + 2·x2   
POL(n__a) = 2   
POL(n__e) = 0   
POL(n__i) = 0   
POL(n__isList(x1)) = x1   
POL(n__isNeList(x1)) = x1   
POL(n__isPal(x1)) = x1   
POL(n__nil) = 0   
POL(n__o) = 0   
POL(n__u) = 0   
POL(nil) = 0   
POL(o) = 0   
POL(tt) = 0   
POL(u) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
QTRS
                  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isNeList(V) → isQid(activate(V))
isPal(V) → isNePal(activate(V))
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isNeList(V) → isQid(activate(V))
isPal(V) → isNePal(activate(V))
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isPal(V) → isNePal(activate(V))
Used ordering:
Polynomial interpretation [25]:

POL(__(x1, x2)) = x1 + x2   
POL(a) = 0   
POL(activate(x1)) = x1   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = 2 + x1   
POL(isNeList(x1)) = x1   
POL(isNePal(x1)) = 1 + x1   
POL(isPal(x1)) = 2 + x1   
POL(isQid(x1)) = x1   
POL(n____(x1, x2)) = x1 + x2   
POL(n__a) = 0   
POL(n__e) = 0   
POL(n__i) = 0   
POL(n__isList(x1)) = 2 + x1   
POL(n__isNeList(x1)) = x1   
POL(n__isPal(x1)) = 2 + x1   
POL(n__nil) = 1   
POL(n__o) = 0   
POL(n__u) = 0   
POL(nil) = 1   
POL(o) = 0   
POL(tt) = 0   
POL(u) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
QTRS
                      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

isNeList(V) → isQid(activate(V))
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

isNeList(V) → isQid(activate(V))
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

niln__nil
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
en__e
on__o
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
Used ordering:
Polynomial interpretation [25]:

POL(__(x1, x2)) = 2 + x1 + x2   
POL(a) = 2   
POL(activate(x1)) = 2 + 2·x1   
POL(e) = 2   
POL(i) = 1   
POL(isList(x1)) = 2 + 2·x1   
POL(isNeList(x1)) = 2 + 2·x1   
POL(isPal(x1)) = x1   
POL(isQid(x1)) = x1   
POL(n____(x1, x2)) = 2 + x1 + x2   
POL(n__a) = 2   
POL(n__e) = 0   
POL(n__i) = 1   
POL(n__isList(x1)) = x1   
POL(n__isNeList(x1)) = 1 + x1   
POL(n__isPal(x1)) = x1   
POL(n__nil) = 0   
POL(n__o) = 1   
POL(n__u) = 1   
POL(nil) = 2   
POL(o) = 2   
POL(u) = 1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
QTRS
                          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

isNeList(V) → isQid(activate(V))
__(X1, X2) → n____(X1, X2)
isPal(X) → n__isPal(X)
an__a
in__i
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__e) → e

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

isNeList(V) → isQid(activate(V))
__(X1, X2) → n____(X1, X2)
isPal(X) → n__isPal(X)
an__a
in__i
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__e) → e

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

isNeList(V) → isQid(activate(V))
isPal(X) → n__isPal(X)
an__a
un__u
activate(n__nil) → nil
activate(n__isList(X)) → isList(X)
Used ordering:
Polynomial interpretation [25]:

POL(__(x1, x2)) = x1 + x2   
POL(a) = 1   
POL(activate(x1)) = x1   
POL(e) = 2   
POL(i) = 1   
POL(isList(x1)) = x1   
POL(isNeList(x1)) = 2 + 2·x1   
POL(isPal(x1)) = 2 + 2·x1   
POL(isQid(x1)) = x1   
POL(n____(x1, x2)) = x1 + x2   
POL(n__a) = 0   
POL(n__e) = 2   
POL(n__i) = 1   
POL(n__isList(x1)) = 1 + 2·x1   
POL(n__isPal(x1)) = x1   
POL(n__nil) = 2   
POL(n__u) = 1   
POL(nil) = 1   
POL(u) = 2   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
QTRS
                              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

__(X1, X2) → n____(X1, X2)
in__i
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__e) → e

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

__(X1, X2) → n____(X1, X2)
in__i
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__e) → e

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

activate(n__e) → e
Used ordering:
Polynomial interpretation [25]:

POL(__(x1, x2)) = 2·x1 + x2   
POL(activate(x1)) = 2·x1   
POL(e) = 1   
POL(i) = 2   
POL(n____(x1, x2)) = 2·x1 + x2   
POL(n__e) = 2   
POL(n__i) = 2   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
QTRS
                                  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

__(X1, X2) → n____(X1, X2)
in__i
activate(n____(X1, X2)) → __(activate(X1), activate(X2))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

__(X1, X2) → n____(X1, X2)
in__i
activate(n____(X1, X2)) → __(activate(X1), activate(X2))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

activate(n____(X1, X2)) → __(activate(X1), activate(X2))
Used ordering:
Polynomial interpretation [25]:

POL(__(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(activate(x1)) = 2·x1   
POL(i) = 2   
POL(n____(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(n__i) = 2   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ RRRPoloQTRSProof
QTRS
                                      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

__(X1, X2) → n____(X1, X2)
in__i

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

__(X1, X2) → n____(X1, X2)
in__i

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

__(X1, X2) → n____(X1, X2)
in__i
Used ordering:
Polynomial interpretation [25]:

POL(__(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(i) = 2   
POL(n____(x1, x2)) = 1 + x1 + x2   
POL(n__i) = 1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ RRRPoloQTRSProof
                                    ↳ QTRS
                                      ↳ RRRPoloQTRSProof
QTRS
                                          ↳ RisEmptyProof

Q restricted rewrite system:
R is empty.
Q is empty.

The TRS R is empty. Hence, termination is trivially proven.